Telegram Group & Telegram Channel
🔥 Команда дня: einsum или как реализовать multi-head self-attention без единого цикла

Если вы работаете с нейросетями, особенно с трансформерами, то, скорее всего, сталкивались с реализациями self-attention, переполненными циклами. Однако благодаря np.einsum можно выразить всю механику multi-head attention в компактной и векторизованной форме.

Вот пример реализации:
def multi_head_attention(X, W_q, W_k, W_v, W_o):  
d_k = W_k.shape[-1]
Q = np.einsum('si,hij->hsj', X, W_q) # (n_heads, seq_len, d_k)
K = np.einsum('si,hik->hsk', X, W_k)
V = np.einsum('si,hiv->hsv', X, W_v)
scores = Q @ K.transpose(0, 2, 1) / np.sqrt(d_k)
weights = softmax(scores, axis=-1)
output = weights @ V
projected = np.einsum('hsv,hvd->hsd', output, W_o)
return projected.transpose(1, 0, 2).reshape(seq_len, -1)


💡 einsum — мощный инструмент для выражения сложных операций с многомерными массивами. Особенно полезен, когда нужно точно контролировать свёртки и трансформации осей. В задачах NLP и computer vision это буквально незаменимая вещь.

📌 Почему стоит обратить внимание:
— Полная векторизация — минимум циклов, максимум скорости;
— Код ближе к математике, а значит — легче проверять;
— Можно выразить довольно сложные операции с тензорами в одной строке.

Библиотека дата-сайентиста #буст



tg-me.com/dsproglib/6471
Create:
Last Update:

🔥 Команда дня: einsum или как реализовать multi-head self-attention без единого цикла

Если вы работаете с нейросетями, особенно с трансформерами, то, скорее всего, сталкивались с реализациями self-attention, переполненными циклами. Однако благодаря np.einsum можно выразить всю механику multi-head attention в компактной и векторизованной форме.

Вот пример реализации:

def multi_head_attention(X, W_q, W_k, W_v, W_o):  
d_k = W_k.shape[-1]
Q = np.einsum('si,hij->hsj', X, W_q) # (n_heads, seq_len, d_k)
K = np.einsum('si,hik->hsk', X, W_k)
V = np.einsum('si,hiv->hsv', X, W_v)
scores = Q @ K.transpose(0, 2, 1) / np.sqrt(d_k)
weights = softmax(scores, axis=-1)
output = weights @ V
projected = np.einsum('hsv,hvd->hsd', output, W_o)
return projected.transpose(1, 0, 2).reshape(seq_len, -1)


💡 einsum — мощный инструмент для выражения сложных операций с многомерными массивами. Особенно полезен, когда нужно точно контролировать свёртки и трансформации осей. В задачах NLP и computer vision это буквально незаменимая вещь.

📌 Почему стоит обратить внимание:
— Полная векторизация — минимум циклов, максимум скорости;
— Код ближе к математике, а значит — легче проверять;
— Можно выразить довольно сложные операции с тензорами в одной строке.

Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/dsproglib/6471

View MORE
Open in Telegram


Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

How to Use Bitcoin?

n the U.S. people generally use Bitcoin as an alternative investment, helping diversify a portfolio apart from stocks and bonds. You can also use Bitcoin to make purchases, but the number of vendors that accept the cryptocurrency is still limited. Big companies that accept Bitcoin include Overstock, AT&T and Twitch. You may also find that some small local retailers or certain websites take Bitcoin, but you’ll have to do some digging. That said, PayPal has announced that it will enable cryptocurrency as a funding source for purchases this year, financing purchases by automatically converting crypto holdings to fiat currency for users. “They have 346 million users and they’re connected to 26 million merchants,” says Spencer Montgomery, founder of Uinta Crypto Consulting. “It’s huge.”

Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from id


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA